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Diffraction by a gap between two breakwaters: 
solution for long waves by matched 

asymptotic expansions 
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Hydraulics Research, Wallingford, Oxon, OX10 8BA, UK 

(Received 10 October 1986 and in revised form 24 February 1986) 

A mathematical model is constructed to represent the diffraction of plane harmonic 
waves through a gap between two semi-infinite breakwaters in water of constant 
depth. The boundary-value problem corresponding to this model is formulated and 
then specialized to the case of waves that are long relative to the gap width. A 
solution to the long-wave problem is found using the method of matched asymptotic 
expansions. A selection of results are presented and, where possible, comparisons are 
made with previous work. 

1. Introduction 
The problem of water-wave diffraction by a gap between two semi-infinite 

breakwaters is investigated. The breakwater configuration to be considered, shown 
in plan view in figure 1, consists of two elements inclined to each other at an angle 
of x - 28,O < < in. The breakwaters are assumed to be infinitesimally thin with 
vertical walls which are perfectly reflecting. It is further supposed that the configu- 
ration is in water of uniform ciepth h. The fluid motion is taken to be induced by a 
train of small-amplitude monochromatic plane waves ; the case of random waves may 
then be obtained from the single-frequency results by using Fourier analysis. The 
standard assumptions are made, that is that the fluid is inviscid, incompressible and 
homogeneous, and in irrotational motion to which linear theory applies. 

The above hypotheses allow the diffraction process to be described by a boundary- 
value problem in two dimensions. The formulation of the boundary-value problem 
is given in detail in $2. We then specialize the equations to the case of waves that 
are long relative to the gap width between the two breakwaters and use the method 
of matched asymptotic expansions to find a solution. This method of solution has 
its basis in the physical problem, from where i t  may be seen that there are two 
distinct important lengthscales. At points sufficiently far from the breakwater gap 
it will appear that the fluid flow at the gap is simply due to a source. This is the 
‘outer’ field and a solution found there will be valid at unscaled distances O(A/(2x)) ,  
where A is the wavelength, from the gap. In  the vicinity of the breakwater gap, the 
‘inner’ field, the important lengthscale is the gap width. A solution may be obtained 
for both the outer and inner problems in the form of an asymptotic expansion in an 
appropriately scaled variable. To find a solution at all points in the field the two 
expansions are related by a matching procedure. The approach used in this paper 
is similar to that used by Tuck (1975). The inner and outer expansions and the 
matching procedure are discussed in $3. In addition in $3, we discuss the way in 
which the solution to this problem may be used in practical circumstances. A 
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FIQURE 1.  Plan view of the breakwater configuration. 

selection of results obtained using this method are given in $4, with the conclusions 
in $5.  

The method of matched asymptotic expansions has previously been used by 
Memos (1980) to fmd solutions to two special cases of the problem discussed here. 
These cases correspond to B > 0, OB = 0, see figure 1, which represents an asymmetric 
gap and /3 > 0, OB = OA, a symmetric gap. Further reference to the solutions of 
Memos may be found in the appropriate places in the text. It is believed that the 
application of this method to the general configuration is new. 

2. Formulation of the boundary-value problem 
A summary of the equations governing the fluid motion are given here. A more 

detailed account may be found in Wehausen & Laitone (1960). 
Under the assumptions given in $1, the velocity field may be expressed in terms 

of a potential function @(z, y, z, t )  by q = -V@, where (2, y, z) are Cartesian coordi- 
nates with z measured vertically upwards, z = 0 coinciding with the undisturbed free 
surface. It is assumed that @ is periodic in time, with an imposed angular frequency 
u. Further, since the breakwaters are supposed vertical and the undisturbed fluid 
depth h is constant both the vertical and time dependence of the fluid motion can 
be anticipated and subsequent calculations simplified by setting 

The wavenumber k is given by the dispersion relation 

u2 = gk tanh (kh). 
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The vertical displacement of the free surface from its equilibrium position is 

rib, y, 0 = Re [$@, Y) e-'utl, (2.1) 

where $(z, y) is a reduced potential satisfying the Helmholtz equation 

$,, + $,, + k2$ (V2 + k2)  + = 0,  (2.2) 

at all points (z, y) corresponding to the fluid domain. 

lie along the line segments B, specified by 
In terms of the polar coordinates ( r ,  f?), where x = r cos 8, y = r sin 6 the breakwaters 

B+: 8 = -p, 
B-:  8 = n+p, r > a_, 

r > a+, 

where p > 0. As the breakwaters are assumed to be perfectly reflecting the boundary 
conditions may be expressed as, 

_ -  '+ - 0, on B,. 
ae 

From (2.1) #(z, y) must be everywhere bounded. Although derivatives of q4 do not 
generally exist near the breakwater ends, they must be integrable there (the so-called 
'edge' condition). It can be shown that for thin perfectly reflecting breakwater the 
derivatives of q4 near the ends generally exhibit a square-root singularity. 

We must also impose the radiation condition 

uniformly in 8, where +d(z, y), the diffracted potential, is that part of the potential 
$ remaining when all parts representing plane wavetrains (incident and reflected) 
have been removed. The edge condition and (2.4) guarantee a unique solution 
provided the fluid motion is induced by an assigned incident wavetrain, which may 
be represented by 

$i(r, 6 )  = exp (-ikr cos (8-a)) ,  (2.5) 

the direction of the incident wave making an angle a with the z-axis, as shown in 
figure 1, where -/3 < a < x+p. 

3. The method of matched asymptotic expansions 

3.1. The outer problem 
In  order to find the outer solution of the problem we first non-dimensionalize the 
variables by setting 

R = kr. 

The Helmholtz equation (2.2) becomes 

1 a24 A (R 9) +- - + # = 0 in the fluid domain, RaR aR R 2 M 2  
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and the boundary conditions (2.3) are rewritten as 

B=n+p, R > K - ,  _ _  la'=, on { 
R ae e=-p ,  R > K + ,  

where K -  = Ka- and K +  = Ka+. 

It may be shown that the potential in the field may be,decomposed as 

Here ci is the incident wave amplitude, ,urn = mn/(n:+2/3) and em = 2, m>, 1, eo = 1. 
In the above expression the summation term corresponds to the diffraction of plane 
waves by a wedge of angle (n -28)  with perfectly reflecting faces on 
8 = n+p, 0 = -/3, see Smallman & Porter (1985). The potential $D(R,e) is the 
diffracted potential due to the presence of the gap which satisfies the radiation 
condition 

uniformly in 8. The edge condition, discussed in 52, may also be similarly 
non-dimensionalized. 

For waves that are long relative to the gap width, so that K+, K -  < 1, a solution 
for $(R,  0 )  is sought in the form of an asymptotic expansion. The small parameters 
K +  and K -  are both ratios of two lengthscales and therefore one expects that the 
expansion will not be uniformly valid. A second expansion for the problem in 
independent variables for the inner field will be required to complement it and this 
will be considered further in $3.2. 

As K- , K + + 0 the breakwater gap reduces to a slit of negligible width at  the origin. 
In  this limit the flow can be represented by a source at R = 0,8 = 0, and a sink at 
R = 0 , 8  = 0-. The imposed requirements on $ are satisfied by 

where M is a source strength, which is as yet unknown. Expressions (3.1) are valid 
where R is O(1) with respect to K+ and K - ;  that is in the outer field at unscaled 
distances O(k-') from the gap. That (3.1) is inappropriate near the gap can be seen 
by noting that, as R+O, 

2i 
HF) (R) = ; log ($R) + 1 + O(R2 log R ) ,  
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where logC = y, the Euler constant. Hence as R-tO from (3.1) 

2i 
+O(R),  -/3 < c x + B ,  (3.2a) 

2nd Mx 

-{l+1110g(&'R)}+O(R210gR), -Mn 2i n + B <  O <  2n-/3, (3.2b) 

( x  - 2/31 

#(R,@ = 

which reveals the non-uniform nature of the solution as R-tO. On physical grounds 
the non-uniformity arises because near the gap the important lengthscale is the gap 
width and not O(k-l). Expression (3.2) is the inner limit of the outer solution. 

3.2. The inner problem 
In  the inner field R is O(K)  and in order to examine the flow in the vicinity of the 
gap the variable R must be stretched and replaced by 

where it may be assumed without loss of generality that K -  2 K + .  In  terms of the 
new variable, the Helmholtz equation (2.2) becomes 

1 a Ba# 1 a2# -- I ? a B (  - aB)+sp+~l# = O  inthefluiddomain, 

and the boundary conditions (2.3) are rewritten as 

-_-  on {e=-/3. 
I? ae e=n+/3, I ? > l ,  (3.4) 

where E = K + / K -  (=  a+/a-) < 1 .  We assume that E = 0(1) on the scale of K+ (a 
restriction that will be relaxed later), i.e. that K+ and K- are of the same order. 

It can be seen that the leading-order term in the asymptotic expansion of $(I?, 9) 
satisfies 

= 0 in the fluid domain, (3.5) 

rather than the Helmholtz equation. This simplifies the problem greatly, in that near 
the gap potential-flow techniques may be used to find a solution. 

A solution of (3.5) is required that satisfies the boundary conditions (3.4) and is 
suitable from the point of view of matching. The most direct method of h d i n g  a 
solution is via a conformal mapping of the fluid domain in ( I ? , @  coordinates to the 
upper half-plane in (u, v) coordinates. In order to do this we introduce the complex 
unit j = 1/ - 1 which does interact with the complex unit i already in use. We define 

B = I? do, w = u+ jv, (3.6) 

the required mapping is given by, 

where p = x + 2 p  and q = n-2/3, 
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2-plane 

- b  I I e u  
+ A  B C = C  D A'+ 

w-plane 

FIQIJRE 2. Details of the conformal map. 

and the positive parameter b is given by 

This transformation is of the Schwartz-Christoffel type and is shown in plan in 
figure 2. It should be noted that the mapping (3.7) is only valid for 8 2 0. A mapping 
of a similar configuration to the upper half-plane appears in Kober (1957). The points 
at infinity on the exposed and sheltered sides of the breakwater map onto the point 
at  infinity in v > 0, and w = 0 respectively. The breakwater boundary maps onto the 
u-axis. The boundary conditions (3.4) together with matching considerations lead to 
the solution 

Rej(m logw+D), 

Rej(m logw+D), 

-p  < 8 < x+p, 
K+@ < 6 < 2n-p, (3.9) 

where m, which is real with respect to j ,  and D are unknown constants. 

inner solution (3.9). To find the outer limit of (3.9) we observe from (3.7) that 
In order to match the two asymptotic expansions we require the outer limit of the 

(i)  as 101 + 00 (i.e. 121 + 0 0 )  

) + D', . .  (25 =-log( 2Pq 
mn l?bzfll'[p - bq] K 

P 
(3.10) 

where D' = Re (D). 
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(ii) as 

(3.11) 

Expressions (3.10) and (3.11) are the outer limits of the inner solution to the 
problem. 

3.3. The matching procedure 
In  order to complete our solution the unknown constants M, m and D must be found 
via the matching procedure. In order to do this we match the inner limit of the outer 
solution with the outer limit of the inner solution having first written both in 
commonvariables (r,  e)  using (3 .3) .  Matching (3.10) with (3 .2a)  and (3.11) with (3.2b) 
yields the following values for the constants: 

& { 2i C K -  PbqlznqqlznpPlzn 
M=-- l+-log 

71 71 R l 3  - bql 
2i m=-M 
L 

and (3.12) 

Having found the unknown constants M, m and D' the potential at all points in 
the field may be recovered by substitution of the constants in expressions (3 .2) ,  (3.10) 
and (3.11). However for present purposes the main aim is to find the far-field 
diffraction coefficients, which are of particular interest to coastal engineers. The 
far-field diffraction coefficient is obtained from the leading-order term of the 
diffracted potential, q5D(r, 8) as r+ 00. The amplitude of this leading-order term may 
be written as (2nr)-4l(B'(a, @)I, where r is the (dimensionless) distance from the origin. 
B'(a,e) is the far-field diffraction coefficient, which is dependent upon a, the 
incident-wave direction and also upon the particular breakwater arrangement. In 
many cases coastal engineers require the ratio of the diffracted wave height at a point 
( r , e )  in the field some distance from the breakwater tip to the height of a uniform 
incident plane wave. If the plane wave is of unit amplitude then this ratio K ( r , 8 )  
may be expressed as 

K(r,  e )  = ( ~ ~ ~ ) - + J F ( c z ,  e)l, 
so that $'(a,@ need only be evaluated once for any 8 and particular breakwater 
arrangement. Hence, given tables of values of the far-field diffraction coefficient for 
several values of t9 and for a specific breakwater configuration, the diffracted 
wave-height ratio K(r ,  8) can be calculated at any point (r, 8 )  which is sufficiently far 
from the breakwater tip. Therefore, in the case of a breakwater in water of uniform 
depth, the far-field coefficients give the wave heights at points in the flow field far 
from the breakwater ends. In  addition, the far-field coefficients for a breakwater in 
water of uniform depth constitute the initial data for solving the diffraction/refraction 
problem for the same breakwater configuration in water of varying depth. Further 
information on how this procedure is carried out is given by Southgate (1985). 
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3.4. Far-field behaviour 
In order to obtain an expression for the far-field diffraction coefficient we consider 
the behaviour of (3.1) a5 R + o o , K + / ~  < 8 < 2x-/3, which represents the sheltered 
part of the harbour in the idealized problem. From (3.1), noting the following (see 
Abramowitz & Stegun 1965): 

we have 

as R-+ 00. Here PII(a, 8) is the far-field diffraction coefficient for long waves, 

2in: M 
F ~ ~ ( c ~ ,  e)  = -- - 

(x-228) & - 
By substituting for M from (3.12) may be written as 

(3.13) 

The relation between the ratio of the gap widths E and the far field may be regarded 
as being given parametrically in terms of b by (3.8) and (3.13). 

Several comments may be made about (3.13). The first is that (3.13) is for 
K+ , K -  + 1, where K+ and K -  are the dimensionless gap widths, which are related to 
the actual gap widths, a+ and a_, via K+ and K -  = ka- where k(= 2n:/A) is the 
wavenumber. Results will be given for gap widths a+ and a- that are measured in 
wavelengths A. It should also be noted that (3.13) is independent of the incident angle 
01 and the observation angle 0 and depends only upon gap widths K +  and K -  (through 
the ratio E )  and the breakwater angle /3. 

Also, it should be observed that the conformal map (3.7), and hence the expression 
(3.13), is only valid for 0 < /3 < in. For the special case /3 = 0 the counterpart of 
(3.13) can be easily derived and may be shown to be 

(3.14) 

The far-field coefficients for the case /3 < 0 could also be derived using similar 
techniques to those described here for /3 > 0, but, as this is less significant from a 
physical point of view it is not included here. 

For the special case of the breakwater arrangement with a+ = 0 (one-sided gap) 
it is possible to use a similar conformal-mapping technique to obtain an expression 
for the far-field coefficient. The details of the mapping for this special case are given 
in Smallman (1983) where it is shown that the far-field coefficient is 

(3.15) 

From (3.8) it can be seen that as b+q/p(b+(n:-2 /3) / (x+2/3) ) , s+O(~+ +0) and that 
(3.15) is correctly given in the limit. This implies that, although E = 0(1) has been 
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FIQURE 3. Far-field coefficient as a function of gap-width ratio 
(a+/a-) for a- = 0.08 wavelengths ( K -  = 0.6). 

assumed in the derivation of (3.13), the latter is nevertheless uniformly valid as s+O. 
The expression (3.15) coincides with that given by Memos (1980) for the same 
breakwater configuration. 

4. Results 
By assigning values to the parameter b it  is possible to exhibit graphically the 

relation between FII and E given by (3.8) and (3.13). Before doing this, some comment 
may be made on the range of values of b. From (3.8) i t  can be seen that 

- < b < l * O < ~ f l .  !I 
P 

In  particular if b = q/p = ( R  - 28)/(7t + 28) then E = 0 and the general configuration 
becomes the special case discussed where a+ = 0, the one-sided gap. Similarly if b = 1 
then e = 1 which is the special case of the symmetric configuration, a, = a_. 

using (3.8) and (3.13) for various values 
of the parameter b. The far-fieId coefficient I&,( was plotted against the ratio E for 

Several calculations were made for 
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FIGURE 4. Far-field coefficient as a function of gap-width ratio 
@+/a_) for a- = 0.04 wavelengths ( K -  = 0.25). 

I I I I I I I I I  

0 '  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIGURE 5. Far-field coefficient as a function of gap-width ratio 
@+/a_) for a- = 0.016 wavelengths ( K -  = 0.1). 
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U- Present method Method of Gilbert & Bramptont 

0.016 0.90 
0.040 1.16 
0.080 1.45 

o . m . 9 1  
1.07-1.23 
1.13-1.63 

t Results for incident angles alrad, 0 < a < i x ,  observation angles @/Tad, x < 0 < 2n. 

€ = 1 (a- = a+) 
TABLE 1. Far-field coefficients for breakwater angle B = 0 and gap widths aJwavelengths, 

K -  = 0.1,0.25,0.5 (corresponding to a- = 0.1/2x, 0.25/2x, 0.5/2n wavelengths) and 
/3 = &x, $ and in. These results are displayed in figures 3, 4 and 5, together with 
results for = 0 from (3.14). From these figures several trends of behaviour of the 
far-field diffraction coefficients may be noted. 

First, as B increases, and therefore the angle between the breakwaters decreases, 
the value of the far-field coefficient increases for all E .  For any fixed gap-width ratio 
E ,  as B increases the value of the far-field coefficient lies within a small range, although 
this range decreases as 6 increases. It can also be seen from figures 3-5 that for fixed 
B and a- the values of the far-field coefficients increase as E increases. This 
corresponds to the values of the far-field coefficients increasing as the gap on one side 
of the structure is held fixed and the gap on the other side is increased. 

A direct comparison may be made between the results from the present method 
and those of Gilbert & Brampton (1985) for the special case B = 0. The method 
employed by Gilbert & Brampton to calculate the far-field coefficients uses an 
integral-equation formulation of the problem of diffraction by a gap in a straight 
breakwater. The integral equations are solved numerically and the method is valid 
for all gap widths. For the situation where the breakwater gap is not small relative 
to the incoming wavelength, the far-field coefficients will be dependent on both the 
incident wave angle a and the obervation angle 8. Therefore for a specified gap width 
the far-field coefficients will cover a range of values that reflects this dependence. A 
comparison between the results from the two methods is shown in table 1. It can be 
seen from the results of Gilbert & Brampton that as the gap width decreases the range 
of values covered by the far-field coefficients also decreases. The far-field coefficients 
calculated using the present method are inside the range of those calculated using 
Gilbert & Brampton’s method, and, as expected, the agreement between the two sets 
of results is at its best for the narrower gap widths. 

A qualitative comparison can also be made between the results obtained using a 
variational method (valid for all gap widths) and those from the present method for 
the case of the symmetric configuration ( E  = 1). Such a comparison, for /3 = @ and 
/3 = in, is given in tables 2 and 3. The derivation and use of a variational method 
in finding the far diffracted field for the general breakwater configuration is given 
in Smallman & Porter (1985). A similar comment as was made for the results of 
Gilbert & Brampton applies to the results in the case a- = 0.125 given in tables 2 
and 3, which are those calculated using the variational method; that is for a specified 
gap width the far-field coefficient will cover a range of values that reflects their 
dependence on the incident-wave angle a and observation angle 8 in tables 2 and 3. 
In fact i t  is shown in Smallman (1983) that, for the general breakwater configuration, 
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a- 1411 

0.016 0.91 
0.040 1.18 
0.080 1.47 
0.125 0.98-2.Wt 

t Result calculated using the variational method for incident angle a = &t/rad, observation 
angles elrad, in < 0 < Yn. 

TABLE 2. Far-field coefficients lFIIl for breakwater angle B = in rad and gap width 
a-/wavelengths, E = 1 (a- = a+) 

a- 1411 
0.016 0.93 
0.040 1.21 
0.080 1.51 
0.125 2.067 

t Result calculated using the variational method for incident angle a = #I rad, observations 
angle Blrad, in < 0 < in. 

TABLE 3. Far-field coefficients IE;II for breakwater angle /? = in rad and gap width 
a-/wavelengths, E = 1 (a- = a+) 

as the gap widths narrows the far-field coefficient covers a smaller range of values 
until we arrive at the case considered here where, for waves that are long relative 
to the gap width, FI, is independent of a and 8. This was discussed in 93.4. It can 
be seen from tables 2 and 3 that the results from the two methods of solution fit 
together well and that for small gap widths the trend of the far-field coefficient 
increasing with increasing gap width is preserved. 

5. Conclusions 
The method of matched asymptotic expansions has been used to find a solution 

to the problem of diffraction of long waves by a gap between two breakwaters. In 
particular, an expression has been found for the far-field diffraction coefficient in the 
lee of the breakwaters. This coefficient may be used to find the diffracted wave-height 
ratio at distances far from the breakwater tip and also constitutes the initial data 
to solve the corresponding diffraction/refraction problem. The far-field diffraction 
coefficient has been used here to demonstrate trends in the behaviour of the diffracted 
field for a number of different breakwater configurations. 
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